
PHYSICAL REVIEW E APRIL 2000VOLUME 61, NUMBER 4
Burgers’ turbulence with self-consistently evolved pressure
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~Received 4 March 1999; revised manuscript received 23 August 1999!

The Burgers’ model of compressible fluid dynamics in one dimension is extended to include the effects of
pressure back-reaction. The system consists of two coupled equations: Burgers’ equation with a pressure
gradient~essentially the one-dimensional Navier-Stokes equation! and an advection-diffusion equation for the
pressure field. It presents a minimal model of both adiabatic gas dynamics and compressible magnetohydro-
dynamics. From the magnetic perspective, it is thesimplestpossible system which allows for ‘‘Alfvenization,’’
i.e., energy transfer between the fluid and magnetic field excitations. For the special case of equal fluid
viscosity and~magnetic! diffusivity, the system is completely integrable, reducing to two decoupled Burgers’
equations in the characteristic variablesv6vsound (v6vAlfven). For arbitrary diffusivities, renormalized per-
turbation theory is used to calculate the effective transport coefficients for forced ‘‘Burgerlence.’’ It is shown
that energy equidissipation, not equipartition, is fundamental to the turbulent state. Both energy and dissipation
are localized to shocklike structures, in which wave steepening is inhibited by small-scale forcing and by
pressure back reaction. The spectral forms predicted by theory are confirmed by numerical simulations.

PACS number~s!: 47.27.2i, 52.35.Ra, 41.20.Jb
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I. INTRODUCTION

The challenge of understanding the puzzling phenom
generically dubbed ‘‘intermittency’’ has secured the status
turbulence as one of the premiere unsolved problem in c
sical physics. Intermittency phenomena complicate
simple and elegant picture of turbulence dynamics origina
painted by Kol’mogorov. This model, which is a type
mean-field theory, is based upon assumptions of homog
ity, scale similarity, and unconstrained statistics govern
the interaction between different degrees of freedom. In
mittency phenomena, however,emphasizethe nontrivial
structure of higher order~than quadratic! correlations by dis-
torting the shape of the fluctuation probability distributio
function ~PDF!, modifying spectra and introducing comple
coherent effects into flow visualizations. Indeed, mount
evidence from numerous numerical and laboratory exp
ments suggest that spatiotemporally coherent structures
the cause of intermittency phenomena in turbulent flo
Such structures imposepreciselythe sorts of constraint on
the phase dynamics of nonlinear interaction which is~arbi-
trarily! ignored in the Kol’mogorov paradigm. Thus th
problem of understanding the formation and dynamics
structures in turbulence is a very popular research topi
nonlinear and statistical dynamics. A major obstacle
progress in this field is the resistance of the governing n
linear PDE’s to revealing nonperturbative solutions~even for
simplied, limiting cases!, from which insight into coheren
structure properties and dynamics may be extracted. He
the recent flurry of studies of the Burgers’ equation mode
one-dimensional~compressible! turbulence is not at all sur
prising, since explicit, closed form solutions~resembling
shock waves! to the unforced Burgers’ equation have lon
been available. The more complicated case of stochastic
forced ‘‘Burgerlence’’ is readily amenable to analysis
scaling and renormalization group methods. Of course, o
dimensional~1D! forced Burgerlence is also an attractiv
PRE 611063-651X/2000/61~4!/3912~14!/$15.00
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model for high-resolution numerical simulations. Thus,
spite of its oversimplicity and unphysical assumptions, Bu
erlence retains its prominent position in turbulence mod
by virtue of its suitability as a ‘‘laboratory animal’’ for con
trolled experimentation in the application of theoretic
methods to the description of turbulent flows.

In traditional Burgers’ models, density or pressu
changes result solely from changes in the velocity, much
the advection of a passive scalar. However, the evolution
these pressure terms suggest that they may grow enoug
become dynamically significant. Indeed, the formation
shock waves and pancakelike density structures forces
sideration of pressure back reactions on the fluid. Alter
tively, the inclusion of pressure forces may be necess
from the very beginning, as in modeling pressure-induc
flow or the basic magnetohydrodynamics~MHD! equations.

These considerations motivated us to extend the sim
Burgers’ model of turbulence to include the effects of
active pressure gradient. The pressure source, in turn
coupled with the fluid through a convection-diffusion equ
tion ~e.g., adiabatic gas pressure and the continuity equa
for density!. For simplicity, we will consider the specific~yet
representative! case of 1D compressible MHD, previous
referred to as MHD Burgerlence@1#. While references to the
other model systems will be given, where appropriate,
relative lack of attention given to MHD turbulence~com-
pared with its neutral fluid counterpart! suggests that the
most insightful interpretations may be in this field.

In this paper we present and analyze a 1D model of co
pressible, resistive MHD turbulence. In parallel, we interp
the model as a gas-dynamical system, with the magnetic fi
replaced by a gas density under the influence of an adiab
pressure. We give an exact, closed form solution to the
forced system in the case of unity~magnetic! Prandtl number
n5h. The solution represents shock waves in the charac
istic variables of the dissipationless system. The scale inv
ance of inertial range Burgerlence is exploited to der
3912 © 2000 The American Physical Society



r

li-

rc

o
tio

a
ca
fra
ar

r-
is

th
s
e
h

I
ge

I
h

d
m
d
th
th

en
t
n
lt
e
io
ar

io
rs

o-

l o

s
en

sity
ys-

nd-

or
city,
the
may
the
res
uid.
es-
re-
se,
ers
the
l of
s-
the

e

c-
d
d

ion

ine
the

PRE 61 3913BURGERS’ TURBULENCE WITH SELF-CONSISTENTLY . . .
coupled renormalization group~RG! recursion equations fo
the turbulenct viscosity (n t) and diffusivity (h t) in the infra-
red limit, to one-loop order. This task is dramatically simp
fied by the observation thatGalilean invariance precludes
renormalization of the interaction coupling coefficients, as
well as the purely advective coupling. For white-noise fo
ing, there is no amplitude~wave function! renormalization,
leading to RG recursion equations forn t and h t which
closely resemble those for a~nonlinear! dynamical system in
a 2D phase space. Of the three fixed points obtained, the
physical solution corresponds to a state of equidissipa
~i.e., n t5h t; not equipartition, wherêṽ2&5^B̃2&), indepen-

dent of the noise strengthsfor ṽ and B̃!. ~This conclusion
still holds for spatially dependent noise.! The basin of attrac-
tion of the equidissipation fixed point encompasses
n t,h t.0. The RG exponents are determined by simple s
ing relations and Galilean invariance constraints in the in
red limit. The scaling exponents and fixed point relations
then used to calculaten t and h t, and thus^ṽ2(k)& and

^B̃2(k)&, explicitly. As in the case of hydrodynamic Burge
lence, the forcing on small scales present in the white-no
spectra is strong enough to inhibit shock formation, i.e.,
kinetic and compressional~magnetic! energy spectra scale a
E(k);k21, not k22. For spatially dependent noise, th
amount of suppression depends on the correlation lengt
the forcing.

The remainder of this paper is organized as follows.
Sec. II, we present and discuss the pressure-coupled Bur
model. Various properties of the model are elucidated.
Sec. III, we discuss dynamical aspects of the model. T
unforced system is solved exactly for the casen5h. More
general transport conditions~i.e., nÞh) are discussed, an
the forced model is introduced as a paradigm for more co
plicated turbulence systems. Next, the infrared statistical
namics of forced MHD Burgerlence are analyzed using
direct-interaction approximation and RG methods for
case of uncorrelated white-noise sources~the extension to
spatially dependent noise is treated in appendixes!. Scaling
arguments are used to determine the dynamical expon
The one-loop RG recursion equations are used to obtain
physically relevant fixed point and its basin of attractio
Section IV contains a summary and discussion of resu
Particular emphasis is given to the turbulent transport co
ficients and the subsequent energy spectra. The implicat
of these results for other paradigms of MHD turbulence
discussed.

II. MODEL

Burgers’ equation is the simplest nonlinear generalizat
of the diffusion equation. As a result, it appears as a fi
approximation in a variety of fields, including polymer m
tions @2#, the growth of interfaces@3#, and driven diffusion
@4#. Burgers originally formulated the equation as a mode
compressible fluid motion in one dimension@5#, writing

Dv
Dt

5
]v
]t

1v
]v
]x

5n
]2v
]x2 , ~1!

wheren is the kinematic viscosity. It is the Navier-Stoke
equation in one dimension, without the pressure gradi
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The dynamics described by Eq.~1! are straightforward: con-
vection steepens waves until they are balanced by visco
~Fig. 1!. Thus Burgers’ equation captures the essential ph
ics of shock formation@5# and frontogenesis@6,7#. It has also
been used to model the 1D clumping of matter in an expa
ing universe~through the equation of continuity! @8,9#.

In traditional models of Burgers’ turbulence, density
pressure changes result solely from changes in the velo
much like the advection of a passive scalar. However,
evolution of the neglected pressure term suggests that it
grow enough to become dynamically significant. Indeed,
formation of shock waves and pancakelike density structu
forces consideration of pressure back reactions on the fl
Alternatively, the inclusion of pressure forces may be nec
sary from the very beginning, as in modeling pressu
induced flow or the basic MHD equations. In the fluid ca
the reintroduction of a pressure gradient effectively recov
the 1D Navier-Stokes equation. For the magnetic case,
inclusion of magnetic pressure creates a simplified mode
the MHD equations. We will concentrate on the MHD sy
tem, and refer to the other models at the end. To simplify
physics, the derivations will be given for the force-free~i.e.,
decay! case. The addition of random forcing terms will b
considered in later sections.

To begin, then, consider a fluid free to move in one dire
tion ~the x̂ direction, say! with a perpendicular magnetic fiel
( ẑ direction! permeating it. The fluid behavior is describe
by the equations of continuity and momentum:

]r

]t
1

]~rv !

]x
50, ~2!

]v
]t

1v
]v
]x

52
1

r

]

]x FP~r!1S B2

8p D G1n
]2v
]x2 . ~3!

Here, an equation of stateP5P(r) has been implicitly as-
sumed. The magnetic field evolves according to the diffus
equation

]B̂

]t
5¹W 3~vW 3BW !1h¹2BW , ~4!

which in one dimension reduces to

]B

]t
52

]~vB!

]x
1h

]2B

]x2 . ~5!

FIG. 1. Wave steepening in Burgers’ equation. The initial s
wave on the left evolves to the steady-state sawtooth shock on
right.
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3914 PRE 61J. FLEISCHER AND P. H. DIAMOND
In these equations,h5c2/4ps is the magnetic diffusivity,
ands is the electrical conductivity of the fluid.

While Eqs.~2!, ~3!, and~5! completely determine the sys
tem ~with an appropriate equation of state!, they are still too
complicated for our purposes. To model the MHD behav
explicitly, assume that the fluid density changes on a len
scale which is much longer than that of the magnetic fie
i.e., B21]xB@r21]xr. In a perturbation expansionr5r0
1r1(x)1¯ , only the lowest-order~constant! term would
contribute. Alternatively, pressure balance could link dens
and magnetic fluctuations in a weakly compressible fluid
in some parts of the solar wind plasma@10,11#. In this pic-
ture, Alfvenic properties are determined by magnetic va
tions on a constant density background. With this simplifi
tion, the model equations become

]v
]t

1v
]v
]x

1B
]B

]x
5n

]2v
]x2 , ~6!

]B

]t
1

]

]x
~vB!5h

]2B

]x2 , ~7!

whereB has been normalized to represent the instantane
Alfven velocity B/A4pr0. Despite the approximations, Eq
~6! and ~7! still conserve energy~up to dissipation effects!.
Indeed, some straightforward manipulations give

]

]t E 1

2
~v21B2!dx52E FnS ]v

]xD 2

1hS ]B

]x D 2Gdx, ~8!

proving the assertion. The MHD Burgers model is thus
simplestpossible set of equations which allow ‘‘Alfveniza
tion,’’ i.e., the exchange of magnetic and fluid energies. T
inclusion of compressional effects of the fluid density on
complicates this basic picture, justifyinga posteriori its ne-
glect. The system represents ameaningful, if limited, model.

Equations~6! and ~7! may also model the opposite lim
of a fluid-dominated~i.e., unmagnetized! system. In this
case, we allow arbitrary density variations and assume
adiabatic equation of state:P5Arg. Here A is a constant
and g5Cp /Cv is the ratio of specific heats. Note that th
Burgers’ gas is certainly not adiabatic in the shock regio
but it is a reasonable approximation for the interstitial pr
sure. Sinceg is also given by (21d)/d, where d is the
number of dimensions, Eq.~7! now describes the gas mo
mentum, whereB5A3Ar is the local sound speed. Equatio
~6! is the continuity equation for the rescaled density w
the addition of a diffusion term~consistent with a density
dependent gas pressure!. Hence the MHD Burgers system
has a broader applicability, and the transformations betw
these disparate models will prove useful in the analy
which follows.

The gas-dynamic viewpoint often provides insightful i
terpretations into the analogous MHD system. For exam
the association between the gas density and the mag
field highlights the latter’s role as a compressive restora
force for the propagation of Alfven waves. Similarly, th
global conservation~up to dissipation! of fluid momentum
*(vB)dx corresponds to the conservation of magnetic fl
In the limit of negligible pressure back reaction, this cons
vation forcesB to grow at shocks (v́,0) and damp else
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where. Recalling that the Burgers’ system is energetica
dominated by the shock regions, one sees that magnetic
amplification~there is no dynamo effect in one dimension! is
intrinsically intermittent.

Another obvious gas-dynamic identity is the Galilean
variance of Eqs.~6! and ~7!. However, it is instructive to
examine this symmetry in light of MHD and to review th
transformation of the magnetic field from a fluid perspectiv
In our geometry, there is a magnetic fieldBW 5Bẑ with an
induced electric fieldEW 5Eŷ. Following a frame moving
with velocity vW 5v x̂, the magnetic field may be written as

DB

Dt
5

]B

]t
1v

]B

]x
~9!

5
]B

]t
1v S 2

1

c

]E

dt D ~10!

5
]

]t S B2
vE

c D . ~11!

The partial derivative emphasizes that we are in a mov
frame, prompting the definition of the transformed fieldB8
5B2vE/c. Two comments are in order:~1! taking ]B8/]t
5(]B8/]t8)/(]t8/]t) gives the full relativistic transforma
tion; and ~2! vE/c;(v/c)2B, so B85B ~i.e., Galilean in-
variance! to first order inv/c. Since MHD neglects the dis
placement current, both the magnetic and velocity fields
explicitly nonrelativistic. It is easily seen that the transform
tionsv8(x8,t)5v(x2ut,t)1u, B8(x8,t)5B(x2ut,t) leave
Eqs.~6! and ~7! invariant.

This symmetry is physically apparent in ideal MHD. N
glecting the viscous and forcing terms, the magnetic field
‘‘frozen’’ into the fluid @12# @immediately evident by inter-
preting Eq.~6! as the continuity equation forr#. The Gal-
ilean invariance of the fluid then implies the invariance
the B field. However, the invariance argument does not
pend on any spatial derivatives. Only the time derivative
needed to cancel the extra nonlinear term. Indeed, this
cellation highlights its relevance: Galilean invariance impl
that the nonlinear coupling strength is unaffected~i.e. un-
renormalized! by the following perturbative treatments@13#.
It is useful to note that this symmetry applies in general
compressible, viscous MHD~in any number of dimensions!.

III. DYNAMICS OF MHD BURGERLENCE

A. Unforced case

Since Eqs.~6! and ~7! are generalizations of Burgers
equation, it is reasonable to wonder if the Burgers’ sho
dynamics are contained in the new system. Intuitively,
expect wave steepening to occur until it is balanced by p
sure back reaction. A visualization of this dynamical evo
tion is shown in Fig. 2. Comparison with theN-wave struc-
ture of the original Burger’s model~see Fig. 1! shows that
shock formation is inhibited.

As a first step in the analytical characterization, supp
that the collisional transport rates of the two fields are equ
i.e., the~magnetic! Prandtl number Pr[n/D51. In terms of
the characteristic, or Elsasser, variablesz65v6B the sys-
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PRE 61 3915BURGERS’ TURBULENCE WITH SELF-CONSISTENTLY . . .
tem reduces to two decoupled Burgers’ equations:

]z6

]t
1z6

]z6

]x
5n

]2z6

]x2 . ~12!

This reduction is not surprising, since in dissipationle
MHD Burgerlence, initial value data is propagated along
characteristicsdx/dt5v6B at the constant characterist
velocity v6B. ~In the gas-dynamic analogy, these variab
just represent the combination of fluid and thermal spee!
All the familiar results from Burgers’ equation may be a
plied to this special case. In particular, the system can s
port Alfvenized shock waves, with regions ofź6,0 steep-
ening into fronts and ź6.0 regions smoothing. This
characteristic behavior implies that the MHD dynamics
controlled by the fluid velocity. Indeed, flux conservatio
requires magnetic concentration at the velocity shock fro
while pressure back reaction acts to limit wave steepen
However, the relation] t(Bx)'22(vxBx) implies that both
negative andpositive magnetic shocks are possible. Sin
these shocks dominate the energy spectrum of the sy
@14#, magnetic intensity in MHD Burgerlence is intrinsical
intermittent.

To examine the casenÞD, it is useful to make the simi-
larity transformations

v~x,t !5S n

t D
1/2

f S x

Ant
D , B~x,t !5S D

t D 1/2

gS x

Ant
D
~13!

so that Eqs.~6! and ~7! become

2 1
2 f 2 1

2 z f 81 f f 85gg81P f9, ~14!

2 1
2 g2 1

2 zg81~ f g!85Pg9, ~15!

whereP5Pr215D/n and the prime refers to differentiatio
with respect toz[x/Ant. Integrating once gives

2z f 1 f 252Pg212P f8, ~16!

2zg12 f g52Pg8. ~17!

FIG. 2. Wave steepening in the MHD Burgers’ model. The s
tem evolves over the same period as for Fig. 1.
s
e
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e

s,
g.

m

Now we can solve Eq.~17! for f, substitute into Eq.~16!, and
write g(z)5h(z)22/P to obtain the single equation

4h91Ph124/P5S 11
z2

4 Dh. ~18!

Equations of this type were studied by Thomas@15# and
Herbst@16#, who showed that the solvability condition isP
51. The solution, first given by Pinney@17#, corresponds to
the equal transport case discussed above.

The more general case ofnÞD is not integrable, suggest
ing a more interesting interplay between the fluid and
pressure field. In particular, it raises the following questio
how will arbitrary transport rates affect energy distributio
and structure development?

B. Transport issues in steady-state Burgerlence

In contrast to the strictlylocal interactions of the
Kol’mogorov paradigm for neutral fluids, interactions b
tweendisparate scalesare fundamental to the dynamics o
even the simplest incarnations of MHD turbulence. For e
ample, the nonlocal interaction between a large-scale m
netic field and small-scale fluid motions~commonly referred
to as the Alfven effect! inhibits and reduces eddy-eddy inte
action and cascading. Thus in MHD turbulence the famil
Kol’mogorov inertial range spectrumE(k)5e2/3k25/3 is re-
placed by the Kraichnan-Iroshnikov (KI ) spectrumE(k)
5(e ṽA)1/2k23/2, whereṽA

25^B̃2&/4pr0 . Indeed, the promi-
nent footprint that large-scale magnetic patterns leave u
the inertial range physics of MHD turbulence,even in the
context of mean field (i.e., KI) theory, suggests thatintermit-
tency effects (induced by large-scale structures) will be
least as strong in MHD as in neutral fluid turbulence. This
suspicion is reinforced by consideration of the well-know
reciprocal mechanisms whereby small-scale turbulence
induce and pump large-scale self-organization in MHD. T
turbulent magnetic dynamo, which realizes the process
inverse transfer of magnetic helicity, is the classic exam
of such a mechanism. Asymmetries in the underlying tur
lence are responsible for producing order on large scales.
example, a dynamo in 3D incompressible MHD occurs o
if reflection symmetry of the turbulence is broken. Thus t
dual reciprocal processes, whereby large-scale struct
modulate MHD turbulence via the Alfven effect an
whereby broken symmetry in the turbulence drives lar
scale self-organization, together suggest self-reinforc
feedback in the dynamics of intermittency phenomena
MHD turbulence. The above discussion naturally conc
trates the theorist’s mind on several questions about the
damental dynamics of intermittent pressure-dominated tur
lence, which include~but are not limited to! the following.

~1! How much of the inertial range is affected by th
direct interaction of disparate scales~e.g.,‘‘Alfvenization’’ in
MHD!? Does equipartition occur between kinetic and co
pressional energies, and where? How does the energy d
bution of the system vary with forcing? What roles do flu
and field really play in energy transfer and cascading, an
self-organization processes~i.e., dynamos!?

~2! Can the numerous‘‘conceptual designs’’ for structur
in fluid and MHD turbulence, which abound in the literatu

-
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~e.g., flux tubes, fluid and magnetic vortices, etc.! be ex-
tracted from the governing nonlinear and dissipative PD
Can useful closed form solutions which capture the phys
of these concepts be found? How do these structures im
Alfvenization?

To explore these issues, we will introduce random no
sources to generate and sustain a turbulent steady-sta
the magnetic interpretation, the model equations become

]v
]t

1v
]v
]x

1B
]B

]x
5n

]2v
]x2 1 f̃ v , ~19!

]B

]t
1

]

]x
~vB!5D

]2B

]x2 1 f̃ B . ~20!

The presence of forcing highlights several dynamic regim
depending on whether both fields, or just one, are rando
driven.

~1! f̃ vÞ0, f̃ B50: the fluid is actively stirred whileB is
advected. For low magnetic fields, pressure backreactio
negligible, and the system reduces to Burgers’ advection
passive scalar.

~2! f̃ v50, f̃ BÞ0: the magnetic field has an active sourc
and the fluid responds to the induced pressure. Obvio
this is aB2 ~i.e., higher-order! effect.

~3! f̃ vÞ0, f̃ BÞ0: dual-drive turbulence.
The ‘‘typical’’ turbulence approach is case~1!, where

fluid forcing at large scales produces a Kol’mogorov-ty
energy cascade. In Burgers’ turbulence, small-scale dis
bances directly affect large-scale structures~through shocks!,
so forcing at all scales is the standard statistical tool. He
we will treat the more general case of dual forcing fir
discussing the other cases when appropriate.

C. Forced case

While the decay problem gives insight into the ener
transfer between the fluid and the pressure field, it can
model the transport properties of sustained~i.e., stationary!
homogeneous turbulence. To treat this case, we introdu
random forcing functions into the coupled Burgers’ syste
With these noise sources, the~magnetic! model is governed
by

]v
]t

1lvv
]v
]x

1lBB
]B

]x
5n

]2v
]x2 1 f̃ v , ~21!

]B

]t
1lB

]

]x
~vB!5D

]2B

]x2 1 f̃ B . ~22!

Here, lv and lB are bookkeeping parameters which w
eventually be set to unity. Their labeling is the most gene
one consistent with the conservation of energy.

While the random fluid forcingf̃ v is introduced mainly as
a turbulent energy source,f̃ B has a variety of possible phys
cal meanings. From a fluid perspective,f̃ B represents see
pressure or temperature variations~as functions of the den
sity!, or the random ionization and dissociation and reco
bination of particles in a concentrated solution. From a c
mological perspective, f̃ B models spontaneous densi
s
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fluctuations, which are necessary for initial matter clumpin
In the MHD interpretation,f̃ B models random seeding of
perpendicular magnetic field, or fluctuations of an ambi
force-free one.

Superficially, the presence of random forcing controls
dynamics of the system. However, this extended Burge
model is a coupled system of two nonlinearly interacti
fields, and the dynamical response to even simple sourc
not a priori obvious. Indeed, these nonlinear interactions c
induce non-Gaussian distributions, even for Gaussian no
Physically, deviations from normality~i.e., intermittency ef-
fects! result from the development of shocks or other larg
scale coherent structures. A flat initial spectrum allows th
effects to be seen more clearly. To simplify the analys
then, let us first assume thatf̃ v and f̃ B are random white-
noise forcing functions with no cross-correlations, i.e.,

^ f̃ i~k,v! f̃ j~k8,v8!&5Sid i j d~k2k8!d~v2v8!, ~23!

where i , j P$v,B%. Note that the forcing is now distribute
equally on all spatial scales.~The extension to spatially
dependent noise is treated in Appendix B.! An example of
the forced dynamics is shown in Fig. 3.

For convenience, we will call the range of dynamic r
sponse the inertial range. Technically, though, we are c
sidering a regime of driven turbulence, rather than a pro
‘‘inertial’’ range ~i.e., a momentum-dominated response
purely large-scale forcing!. The only difference is the band
width of the noise sources, but the corresponding interpr
tions differ significantly. A reconciliation between these tw
viewpoints will follow the analysis, where the results w
allow a basis for comparison.

1. Scaling arguments

We are interested in fully developed MHD Burgerlen
for long times and large distances. For homogeneous tu
lence in the inertial range, there are no intrinsic scale leng
Dynamical terms will dominate beyond the dissipati
lengths, and correlation functions will asymptotically a
proach simple algebraic forms@18,19#. For example, the ve-
locity autocorrelation^dv2(dx,t)& will have the homoge-
neous form (dx)2a^dv2(t/dxa)&. Alternatively, v}ka

provides a nonlinear dispersion relation for the system@20#.
To see the dependence of the various parameters on

scale size, suppose that we change the length scalex→bx.
Under this similarity transformation, the other variables w
scale, in general, ast→bat, v→bcv, and B→bdB. After
this rescaling, Eqs.~21! and ~22! become

]v
]t

1lvba1c21v
]v
]x

1lBba2c12d21B
]B

]x

5nba22
]2v
]x2 1ba2c f̃ v , ~24!

]B

]t
1lBba1c21

]~vB!

]x
5Dba22

]2v
]x2 1ba2df̃ B , ~25!

Consistent scaling oflB implies thatc5d. Therefore,v and
B scale the same way~necessary for the local conservation
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energy!. The assumption of white noise implies that^ f̃ 2&
5* f̃ 2dk dv is invariant to a change in scale. Hence,a
52c11; there is only one independent exponent to find

Choosinga as the necessary exponent, the parame
~i.e., coefficients! of Eqs.~24! and ~25! now scale as

H lv

lB
J→b3~a21!/2H lv

lB
J , H n

DJ→ba22H n
DJ . ~26!

Finding a is equivalent to finding the transport behavior
the system. This is immediately apparent from the relat
xa;t. For example,a52 signifies diffusion, as in the simi
larity transformation used in Eqs.~13!. That diffusive as-
sumption was motivated by the Hopf-Cole solution to t
unforcedBurgers’ system. In the case here, the presenc
forcing dynamically altersthe system response, modifyin
the transport relationship.

It is critically important to note that random Galilean in
variance implies that the coupling coefficientl is unaffected
by the the nonlinear interactions~i.e., no vertex corrections!
@13#. This is seen most easily from Burgers’ equation~12!,
with z6 acting as velocity. In a moving reference fram
z6(x,t)→z6(x2lzz6t,t). Note that the coupling coeffi
cient is necessary in the velocity boost, since the first-or
correction~i.e., symmetry generator! is nonlinear. Galilean
invariance and scale invariance can be preserved only iflz is
unrenormalized. By the arguments in Sec. III B, this con
tion also holds for bothlv andlB . This constraint immedi-
ately gives the scaling exponentsa51 andc50. That is,x
;t, so transport is ballistic rather than diffusive. Thespeed
of propagation, though, can only be determined through
proximation methods.

2. Direct-interaction approximation

The direct-interaction approximation treats the nonl
earites of Eqs.~21! and ~22! as perturbations. The scalin
behavior is then determined by spatially averaging over
interacting modes. To this end, we Fourier transform
system in space and time, giving

~2 iv1nk2!vk,v52lvK v
]v
]xL

k,v

2lBK B
]B

]x L
k,v

1 f̃ v ,

~27!

~2 iv1Dk2!Bk,v52lBK ]

]x
~vB!L

k,v

1 f̃ B , ~28!

where the angular brackets^¯&k,v represent a convolution
These equations may be solved perturbatively by an exp
sion in the nonlinear interaction strengthslv;lB :

vk,v5vk,v
~0! 1lvvk,v

~1! 1lv
2vk,v

~2! 1¯ ,
~29!

Bk,v5Bk,v
~0! 1lBBk,v

~1! 1lB
2Bk,v

~2! 1¯ .

The linear behavior is a simple diffusive response to
forcing, where the bare~unrenormalized! propagators are de
fined by Gv

0[(2 iv1nk2)21 and GB
0[(2 iv1Dk2)21.
rs

n

of

,

er

-

p-

-

e
e

n-

e

Note the implicit assumption that convection is dominat
by forcing. The nonlinear effects appear as first-order corr
tions:

vk,v
~1! 52 ikG0

v~k,v! (
k8,v8

@lvvk8,v8
~0! vk2k8,v2v8

~0!

1lBBk8,v8
~0! Bk2k8,v2v8

~0!
#, ~30!

Bk,v
~1! 52 iklBG0

B~k,v! (
k8,v8

@vk8,v8
~0! Bk2k8,v2v8

~0!

1Bk8,v8
~0! vk2k8,v2v8

~0!
#. ~31!

These terms appear recursively in the second-order pertu
tions

~2 iv1nk2!vk,v
~2! 52 ik (

k8,v8
@lvv2k8,2v8

~0! vk1k8,v1v8
~1!

1lBB2k8,2v8
~0! Bk1k8,v1v8

~1!
#, ~32!

~2 iv1Dk2!Bk,v
~2! 52 iklB (

k8,v8
@v2k8,2v8

~0! Bk1k8,v1v8
~1!

1B2k8,2v8
~0! vk1k8,v1v8

~1!
#. ~33!

Equations~32! and~33! define renormalized propagator
or ~equivalently! effective transport coefficients. In the hy
drodynamic limit (k,v→0), these coefficients become

n t5
1

4p2 E dk8dv8@lv
2G0

v~k8,v8!uvk8,v8
~0! u2

1lB
2G0

B~k8,v8!uBk8,v8
~0! u2#, ~34!

Dt5
lB

2

8p2 E dk8dv8@G0
B~k8,v8!uvk8,v8

~0! u2

1G0
v~k8,v8!uBk8,v8

~0! u2#, ~35!

using the continuum approximation Sk8,v8→*@dk8dv8/(2p)2#. Integrating overv8 gives

n t5
1

4p FlvSv

n2 1
lBSB

D2 G E
kmin

` dk8

k84 , ~36!

Dt5
lB

2

2p~D1n! FSv

n
1

SB

D G E
kmin

` dk8

k84 . ~37!

HereSv andSB are the~white! noise strengths of the forcing
functions @see Eq.~23!#. Note that the interaction of slow
modes causes the transport coefficients to diverge. Fin
performing the spatial average gives

n t5
1

12pkmin
3 FlvSv

n2 1
lBSB

D2 G , ~38!

Dt5
1

6pkmin
3 F S lB

2

n1D D S Sv

n
1

SB

D D G . ~39!
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Since we are in the inertial range, these turbulent dif
sivities will dominate the original bare ones. Lettingn→n t

andD→Dt, Eqs.~38! and~39! become self-consistent recu
sion relations for the effective viscosity and diffusivity. Ca
rying out the algebra, one finds that

Dt5n tF lv
2SvSB2aSB~n t!3

a~2Sv2SB!~n t!32lv
2Sv

2G , ~40!

wherea56pkmin
3 . Using this relationship, the turbulent di

fusivity is determined by the equation

x32
b

2
@5dc2~2c21!2#x21abc@2~c1d!21#x

2
a2bc

2
~c1d!50, ~41!

where x5a(n t)3, a5lv
2Sv , b5lB

2SB , c5Sv /SB , and d
5lv

2/lB
2. This equation is the stationarity condition fo

MHD Burgerlence.
In terms of the dimensionless interaction parameters

U15
lv

2Sv

6pkmin
3 ~n t!3 and U25

lB
2SB

6pkmin
3 ~Dt!3 ,

the fixed points of Eqs.~40! and ~41! are ~for d;1)

$U1 ,U2%a5H 12A12r ,12
2

r
~11A12r !J ,

$U1 ,U2%b5H 11A12r ,12
2

r
~12A12r !J , ~42!

$U1 ,U2%c5H 2

11r
,

2r

11r J .

The ratio of noise strengthsr[SB /Sv is the only indepen-
dent parameter. Note that 0<r<`. In particular,r may be
greater than 1, implying that the first two solutions may g
complex diffusivities. Imaginary components to the transp
coefficients suggest the propagation of Alfven waves. T
third of Eqs.~42! gives strictly dissipative behavior. Since a
three solutions are theoretically possible, the question
comes one of physical accessibility. In other words, give
set of meaningful initial conditions, which asymptotic fixe
point will the system approach?

As described above, the hydrodynamic behavior is do
nated by the nonlinear terms. These interacting modes w
treated mathematically by averaging over spatial scales
detailed analysis of the scaling behavior, then, will give
sight into the asymptotic transport properties of the MH
system. This analysis is provided by the dynamical renorm
ization group.

3. Renormalization group theory

An alternative method for calculating the scaling exp
nents is the dynamical renormalization group~RNG!. This
approach uses the same perturbation series as done p
ously, but treats the interacting modes differently. Instead
integrating Eqs.~36! and~37! directly, the series is summe
-

rt
e

e-
a

i-
re
A
-

l-

-

evi-
f

successively over small ranges of momenta. This allows
ferential recursion relations to be derived for the respons
the transport coefficients under a scale transformation.
resulting equations give detailed phase flow information
the turbulent diffusivities.

The RNG technique is applied in three steps. First,
series is averaged over an incremental range in mome
The integrations in Eqs.~36! and~37! are performed over the
range kmine

2dl'kmin(12dl)<k<kmin where d l is infinitesi-
mal. To first order~one loop! in the perturbation expansion
the effective transport coefficients are given by

n,5n1
1

4p FlvSv

n2 1
lBSB

D2 G E
kmin~12d l !

kmin dk8

k84 .n

1
1

4p Flv
2Sv

n2 1
lB

2SB

D2 G S d l

kmin
3 D , ~43!

D,5D1
lB

2

2p~n1D ! FSv

n
1

SB

D G E
kmin~12d l !

kmin dk8

k84 .D

1
lB

2

2p~n1D ! FSv

n
1

SB

D G S d l

kmin
d l D , ~44!

where the superscriptt has been replaced by, to emphasize
the averaging over the shell of momenta.

These equations now have an effective cutoffkmine
2dl.

The second step returns the system to its original spacing
rescaling the momenta ask→ke2d l . This is the same scaling
done in Sec. III C 1, withb5ed l . Using the previous results
the renormalized coefficients are related ton, andD, by

n renorm5n1
dn

dl
d l 5n,@11d l ~a22!#, ~45!

D renorm5D1
dD

dl
d l 5D,@11d l ~a22!#, ~46!

To first order ind l , these equations give

dn

dl
5nFa221

1

4pnkmin
3 S lv

2Sv

n2 1
lB

2SB

D2 D G , ~47!

dD

dl
5DFa221

1

2pDkmin
3 S lB

2

n1D D S Sv

n
1

SB

D D G . ~48!

There are also similar recursion relations for the coupl
coefficients$lv ,lB% and the noise strengths$Sv ,SB%. Since
white noise is invariant to a change of scale, these stren
remain unrenormalized~the more general case is treated
Appendix B!. It is shown in Appendix A that there are n
corrections to the coupling coefficients~vertices!. This is due
to the intrinsic Galilean invariance of the original system.
discussed above, this immediately implies the exponena
51.

The final step of the renormalization group requires t
the relevant parameters~i.e.,n andD! remain fixed under the
scale transformation. This ensures that the rescaled equa
have the same form as the original ones. Setting Eqs.~47!
and ~48! equal to zero, one sees that the nontrivial fix
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points are given by Eqs.~38! and ~39!, except $Sv ,SB%
→3$Sv ,SB%. ~This discrepancy arises from the different m
mentum ranges in the two approaches, and would disap
after a full integration of the recursion relations.! With simi-
larly adjusted interaction parameters, the possible branc
are given by Eqs.~42!.

While the RNG methods give the same scaling behav
as the DIA, as they should, they give more information.
particular, the renormalization group gives the explicit ev
lution of the transport coefficients under scale transform
tions. It therefore describes theapproachto the fixed points
in the n-D phase space.

To analyze this behavior more closely, consider the rec
sion relations~47! and ~48! in terms of the interaction pa
rametersU15Sv /(2pkmin

3 n3) andU25SB /(2pkmin
3 D3):

dU1

dl
53U1F12

1

2
~U11RU2!G , ~49!

dU2

dl
53U2F12

1

R S U11RU2

11R D G , ~50!

where R[(rU 1)/U2 and r 5SB /Sv is the ratio of noise
strengths. The fixed points of these equations are given
solutions~42!. There are two ranges to consider:~1! r .1,
giving one real conjugate solution and two complex con
gate solutions; and~2! r<1, giving three real solutions
Since the recursion relations~49! and ~50! are both real, no
real initial parameters (U1 ,U2) can evolve to a complex
fixed point. In the first regime, then, the third of Eqs.~42! is
physically accessible. Forr<1, there is one positive solutio
and two negative ones forU2 . Figure 4 shows the first quad
rant of a phase flow diagram for the representative valur
5 1

2 . The arrows indicate the flow under the renormalizat
transformations~49! and ~50!. Note in particular that the
axes are repellors. Thus, for any physical starting po
(n,D).0, only the positive fixed point is accessible. On
again, the third of Eqs.~42! is the infrared limit of the
system.

FIG. 3. Velocity and magnetic field of forced MHD Burgerlenc
as functions of position. The data are plotted on the half-period
clarity.
ar
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IV. RESULTS AND DISCUSSION

Using the third of Eqs.~42! as the only acceptable solu
tion for the dimensionless interaction parameters, the tur
lent transport coefficients are

n t5FSv1SB

12p G1/3

kmin
21, ~51!

Dt5FSv1SB

12p G1/3

kmin
21. ~52!

The presence of an infrared divergence suggests an imp
scale dependence ask21;A(dx)2. Assuming that (dx)2

;Dt, this spatial dependence implies that the turbulent m
tions of the system create ballistic~rather than diffusive! mo-
tion, with the speed of propagation given by@(Sv
1SB)/12p#1/3.

The equality of the transport coefficients reflects a bala
between an enhanced fluid transport rate and an incre
~and thus more resistant! pressure. From the MHD perspec
tive, the faster magnetic field convection is countered by
enhanced magnetic diffusivity and stronger backreactio
From the gas-dynamic viewpoint, the same nonlinear
hancement of the fluid transport~viscosity! increases the in-
terparticle pressure. In cosmological models, the turbu
pressure~diffusivity! is countered by an enhanced partic
‘‘stickiness.’’ The asymptotic state selected is the one t
balances the two effects.

Physically, equidissipation results from the twofold acti
of the nonlinearities: to create shocks through wave steep
ing and to enhance dissipation. Due to theN-wave structure
of the velocity shock~see Fig. 2!, the dissipation is concen
trated within the shock front. Since the only nonlinearity
the induction equation is thevB Lorentz force, magnetic
concentrations are triggered by the velocity and localize
the front as well. In this configuration, dissipation occu
almost exclusively within the shock, while the interstitial r
gions are essentially ideal. The resulting separation prov
two mechanical viewpoints for equidissipation:

~1! Using the shock height as a measure of its streng
energy dissipation corresponds to a decrease in height. H
ristically, the ‘‘end points’’ must approach each other. Ho
ever, these end points are shared by the ideal region, w
the field is ‘‘frozen in’’ to the fluid. Hence, the transpo
rates must be equal.

~2! A more satisfying view is derived from the equ
transport rates of magnetic and fluid energies in the id
region. Since plasma elements in this region flow into~and
out of! the shock, continuity of energy transport requir
equal transport coefficients across the shock bounda
Within the shock, energy transfer may occur, but the rece
ing field mustaccept energy at the donation rate of the oth
field.

Thus the equidissipation state results from a dynamic c
servation of energy. This is a distinctly separate condit
from the equipartition of energy. Indeed, a straightforwar
calculation shows that

Ev~k!5uvk
~0!u25F 3p

2~Sv1SB!G
1/3

Svk21, ~53!

r
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EB~k!5uBk
~0!u25F 3p

2~Sv1SB!G
1/3

SBk21. ~54!

While the vanishing of the magnetic energy with
source is an acceptable limit, the corresponding velo
limit presents an unphysical result for the fluid kinetic e
ergy. Even asSv→0, the presence of a mean-square m
netic pressure will cause a transfer of energy to the fluid. T
problem is an artifact of expansion~29!, where the random
forcing was the source of the zero-order velocity field. Sin
the magnetic pressure is a nonlinear first-order effect, its
pact on the fluid energy is not included in Eq.~53!. The
relevant energy correction is a simple extension of the ab
calculations, and is given by

Ev
1~k!5uvk

~1!u25~12p!1/3F3

2
~12 ln 2!1

5p

)
GSB

1/3k21,

with a similar, but always subdominant, correction to t
magnetic energy. Equipartition of energy only occurs ifSv
5SB , i.e. the forcing strengths must be equal.~This distinc-
tion between equal dissipation and energy equipartition
been observed in 3D simulations of incompressible MHD
well @21#.! Irrespective of this special case, both energy sp
tra have the same spatial dependence, a direct result o
conservation of energy. In the more general case of colo
noise, this scaling result will hold if the forcing function
themselves have the same spatial dependence. Since th
culations are somewhat more arduous~the noise must now
be renormalized as well!, we relegate them to Appendix B
The main result is that in an algebraic expansion of the fo
ing, only spatial powers of the formS(k);k22b will be
relevant in the hydrodynamic (k,v→0) limit. For long-
range correlations, these singularities give corresponding
ergy spectra which scale asE(k);k2124b/3.

These results suggest that the noise sources determin
energy distribution between the fields, while thek depen-
dence of the equidissipation rate controls the turbulent po
spectra. The spatial dependence of the effective diffusivi
results from the scale similarity of the imposed forcin
Thus, the model of the turbulent steady state is s
consistent and intuitively appealing. Numerical confirmati
of this picture is shown in Figs. 5 and 6. Saturation levels
steady-state MHD Burgerlence are shown in Fig. 5. For
ordinary ~collisional! transport ratesn52h, the energy lev-
els determined bySv5SB and Sv52SB are compared. It is
clear that equal forcing gives energy equipartition. In ad
tion, the large gap between the saturated energy and
dissipation indicates the dominance of the turbulent dif
sivities. These effective transport rates modify the spec
decay imposed by the forcing. This is shown in Fig. 6 for t
casesSv;SB;k0 andSv;SB;k21. Linear fits on the log-
log plots give the respective turbulent energy spectra as«v
;k21 and «v;k25/3, in agreement with the analytical pre
dictions.

The explicit form of the energy spectrum represents
competition between the spatial dependence of the forc
and the system’s natural tendency to form shocks. Thi
most clearly apparent for a white-noise source (S;k0),
where the presence of forcing at small scales inhibits sh
y
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formation, changing the energy spectrum fromk22 to k21.
Spatially dependent noise provides an extra parameter,
decay exponentb, for greater modeling freedom. For ex
ample, the noise profileS(k);k21 recovers a Kolmogorov
spectrum~as found by Chekhlov and Yakhot for the force
Burgers’ equation@22#!, while S(k);k23/8 generates a KI
spectrum. This latter reproduction is particularly interestin
since the KI theory emphasizes the effects of a large-s
field on small-scale energy transfer~the opposite limit con-
sidered here!. Specifically, a large-scale magnetic field inhi
its the cross-field transport of small fluid eddies. In our s
tem, fluid transport is inhibited by small-scale noise and
pressure backreaction. It is the presence of long-range co
lations in the applied forcing which allows the model to d
play the more traditional, inertial-range theories.

V. CONCLUSIONS

We have presented an extension of the Burgers’ mode
1D fluid dynamics to include the effects of pressure. Wh
the pressure effects are magnetic, the system represent
simplest possible model of compressible MHD which i
cludes the effects of Alfvenization~the interchange of mag
netic and fluid energies!. In this case, turbulence is repre
sented by an ensemble of Alfvenic shock waves on
homogeneous density background. Alternatively, the sys

FIG. 4. Renormalization phase flow diagram for the represe
tive valuer[SB /Sv5

1
2 . The trajectories are defined by Eqs.~49!

and ~50!.

FIG. 5. Saturation levels for steady-state Burgerlence. From
top down, the levels represent the fluid energy, the magnetic
ergy, viscous damping, and diffusive damping as functions of~nor-
malized! time. ~a! Levels forSv5SB . ~b! Levels forSv52SB .
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FIG. 6. Representative energy spectra.~a! En-
ergies forSv;SB;k0. The solid line indicates a
slope of21. ~b! Energies forSv;SB;k21. The
solid line has a slope of2 5

3. Both of these slopes
agree with analytical predictions~see text!.
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may describe particle gas dynamics, with arbitrary den
variations reacting to an adiabatic pressure.

Several dynamical regimes of the system were analyz
In the limit of unity Prandtl number (n5h), the system
decouples into two Burgers’ equations in the characteri
variablesv6B. Indeed, since the Hopf-Cole transformatio
effectively ‘‘matches’’ diffusion with ballistic propagation
an exact solution is possible only for the case of equal
fusivities. In the more general case of arbitrary transport
efficients, we applied direct-interaction and renormalizat
group methods to calculate the turbulent viscosity and di
sivity ~i.e, the dynamical decorrelation times! of the ran-
domly forced system. Galilean invariance, obvious in
gas-dynamic interpretation but greatly underappreciated
MHD, simplified the calculations tremendously by preclu
ing vertex ~coupling coefficient! renormalizations. It was
found that the equidissipation state is the only hydrodyna
(k,v→0) fixed point. Energy equipartition, however, d
pended on the equality of the forcing functions.

From the viewpoint of self-organization phenomena~e.g.,
magnetic dynamos, shear-induced mean flow, etc.!, this po-
tential disparity in energy levels is rather fortunate. Indeed
seems unlikely that the energy buildup of one field at
expense of another could happen under the constraint o
ergy equipartition. A more reasonable scenario is field a
plification by equidissipative turbulence, followed by th
nonlinear saturation of growth. The system may then re
toward energy equipartition over time.

While this scenario appears to resolve an intrinsic para
in the Kraichnan-Iroshnikov theory, it relies on a differe
spectral foundation. In the spirit of Kolmogorov, the K
theory assumes a cascading inertial range free from
large-scale forcing which triggered it. Moreover, the pre
ence of a magnetic field can cause large-scale inhibition
small-scale motion. In contrast, our model assumes a
tially extended noise, with the forcing at small scales cre
ing large-distance effects~e.g., the spreading of wave fron
to prevent shock formation!. However, the spatial depen
dence of the forcing acts an extra parameter, allowing
y
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‘‘bubbling’’ dynamics of our model to effectively mimic an
intertial range.

This correspondence suggests that equidissipation is m
fundamental to the turbulent state than energy equipartit
While the equality of transport coefficients is certainly robu
with regard to random forcing, it would be interesting to s
if this equal transport extended beyond the inertial range
particular, will the system dynamically self-adjust to mai
tain n1n t5h1h t, regardless of the initial conditions? Th
would place a fundamental constraint on the onset of in
mittency as well. A related concern is the general probabi
distribution for v and B. The equidissipation state, inte
preted as an ensemble of ballistic structures, gives an as
metric PDF for the characteristic variablesv6B. The distri-
bution before this asymptotic state, and its decoupling i
the individual fields, remains an open problem.

APPENDIX A: VERTEX RENORMALIZATION

In order to see how the nonlinear interactions behave
der a scale transformation, the perturbation series mus
expanded to third-order in the coupling coefficients~vertices!
lv andlB . Equation~27! becomes

~2 iv1nk2!vk,v
~3! 52 ik@lv~2^v ~0!v ~2!&k,v1^v ~1!v ~1!&k,v!

1lB~2^B~0!B~2!&k,v1^B~1!B~1!&k,v!#

~A1!

where the convolutions

^XY&k,v5 (
k8,v8

Xk/22k8,v/22v8Yk/21k8,v/21v8 ~A2!

are symmetrized for convenience. The factors of 2 arise fr
the equivalence ofv (0)v (2) andv (2)v (0) ~and similarly forB!
upon integration. Substituting for lower-order terms, such
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vk/21k8,v/21v8
~1! ; (

k9,v9
@lvvk/21k9,v/21v9

~0! vk82k9,v82v9
~0!

1lBBk/21k9,v/21v9
~0! Bk82k9,v82v9

~0!
# ~A3!

gives a Fourier coupling in$k,k9%, whose effective strength
is given by

lv
t 5 (

k8,v8
k82lv

2Fav~k8,v8!uvk8,v8
~0! u2

1S lB

lv
D 3

aB~k8,v8!uBk8,v8
~0! u2G , ~A4!

lB
t 5 (

k8,v8
k82lB@bv~k8,v8!uvk8,v8

~0! u21bB~k8,v8!uBk8,v8
~0! u2#,

~A5!

where

a$v,B%~k8,v8!5uG0
$v,B%~k8,gq8!u222@G0

$v,B%~k8,v8!#2,
~A6!

b$v,B%~k8,v8!5lvuG0
$B,v%~k8,v8!u2

2lBG0
v~k8,v8!G0

B~k8,v8!.

As before, the bare propagatorsG0
v and G0

B are the linear
diffusive Green’s functions. Using the continuum appro
mation Sk8,v8→*dk8dv8/(2p)2 and performing the inte-
grations~with infrared cutoffkmin) gives

lv
t 50, ~A7!

lB
t 5

lB

6pkmin
3 ~D1n!

S lv

n
2

lB

D D S SB

D
2

Sv

n D . ~A8!

Equation~28! gives an alternative definition forlB
t . Ex-

panding to third order, we have

~2 iv1Dk2!Bk,v
~3! 52 iklB@^v ~0!B~2!&k,v1^v ~1!B~1!&k,v

1^v ~2!B~0!&k,v#, ~A9!

where the convolutionŝ̄ &k,v are given by Eq.~A2!. This
equation gives an effective coupling coefficient

lB
t 52 (

k8,v8
k82lB@M ~k8,v8!uvk8,v8

~0! u21N~k8,v8!uBk8,v
~0! u2#,

~A10!

where

M ~k8,v8!5lB@G0
B~k8,v8!#21lvG0

v~k8,v8!G0
B~k8,v8!

2lvG0
v~2k8,2v8!G0

B~k8,v8!,
~A11!

N~k8,v8!5lv@G0
v~k8,v8!#21lvG0

v~k8,v8!G0
B~k8,v8!

2lBG0
v~2k8,2v8!G0

B~k8,v8!.

Finally, using the continuum approximation to convert t
sum and performing the integrations gives
-

lB
t 5

lB~lB2lv!

6p~D1n!2kmin
3 S SB

D
2

Sv

n D . ~A12!

Settinglv5lB @as done for solutions~22!#, this equation
determines thatlB

t 50. Since Eq.~A8! must give the same
value forlB

t , we haven5D. This is the lower-order resul
given by straight perturbation theory. Self-consistently it
ating this equality in Eq.~A8! would have automatically
given lB

t 50 as well.

APPENDIX B: SPATIALLY DEPENDENT NOISE

To extend the previous results, suppose that the forc
functions are spatially-dependent, so thatSv5S(kV) andSB
5SB(k). Under a change of scale,k→e2d lk, the noise
strengths will rescale asS(k)→S(k)2(d l )k]kS. This extra
scaling modifies the turbulent transport coefficients and c
ates nonzero corrections to the forcing~i.e., wave function
renormalization!. Galilean invariance still ensures that th
coupling coefficients remain unchanged.

To examine these changes, we extend the analysis do
Sec. III C 3. In symmetrized form, Eqs.~32! and~33! become

~2 iv1nk2!vk,v
~2!

52 ik (
k8,v8

@lvvk/22k8,v/22v8
~0! vk/21k8,v/21v8

~1!

1lBBk/22k8,v/22v8
~0! Bk/21k8,v/2,v8

~1!
#, ~B1!

~2 iv1Dk2!Bk,v
~2!

52 iklB (
k8,v8

@vk/22k8,v/22v8
~0! Bk/21k8,v/21v8

~1!

1Bk/22k8,v/22v8
~0! vk/21k8,v/21v8

~1!
#, ~B2!

where G0
v(k,v)5(2 iv1nk2)21 and G0

B(k,v)5(2 iv
1Dk2)21 are the bare propagators.

These equations may also be used to define effec
propagators. As before, we can absorb the effects of the
propagators into effective transport coefficients. Consi
Eq. ~B1! first. For long times (v→0), we have

nk25
lv

2

~2p!2 E dk8dv8F kS k81
k

2D
2 iv81nS k81

k

2D 2G
3F SvS k82

k

2D
v821n2S k82

k

2D 4G1 H v→B
n→DJ . ~B3!

Performing the frequency integral gives
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nk252
lv

2

8pn2 E dk8F kS k81
k

2DSvS k82
k

2D
S k82

k

2D 2S k821
k2

4 D G1 H v→B
n→DJ .

~B4!

The new propagator contains higher-order terms than
original k2 of the bare one. Since the hydrodynamic behav
is dominated by the small-k limit, Eq. ~B4! may be expanded
in powers ofk. To lowest order, then, we have

nk252
lv

2

8pn2 E dk8F3Sv~k8!2k8
]Sv~k8!

]k8 G S 1

k84D
1 H v→B

n→DJ . ~B5!

To implement the renormalization group, we integra
over the rangekmine

2dl'kmin(12dl)<k8<kmin , whered l is
an infinitesimal change in length. To first order ind l , the
turbulent viscosity becomes

n t5
d l

8pkmin
3 Flv

2Sv~kmin!

n2 @32gv~kmin!#

1
lB

2SB~kmin!

D2 @32gB~kmin!#G , ~B6!

wheregi(kmin)5@k/Si(k)#@]Si(k)/]k#ukmin .
Equation~B2! is evaluated in exactly the same mann

giving an effective diffusivity

Dt5
d llB

2

2p~n1D !kmin
3 H Sv~kmin!

n2 F S 3

2
1

n2D

n1D
2

gv~kmin!

2 D G
1

SB~kmin!

D F S 3

2
2

n2D

n1D
2

gB~kmin!

2 D G J . ~B7!

Since the noise is now spatially dependent, it is no lon
invariant to a change in scale. The corrections appear ex
itly in the autocorrelation functions. For example, first-ord
velocity perturbations give

^vk,v
~1!* vk,v

~1! &5 (
k8,v8

~k1k8!2uG0
v~k,v!u2

3@lv
2uvk8,v8

~0! u2uvk2k8,v2v8
~0! u2

1lB
2 uBk8,v8

~0! u2uBk2k8,v2v8
~0! u2#. ~B8!

For long times (v→0), this reduces to

^vk,v
~1!* vk,v

~1! &5S 1

2p D 2E dk8dv8F ~k1k8!2

v821n2k84G
3Flv

2Sv~k8!Sv~k2k8!

v821n2~k2k8!2 G1 H v→B
n→DJ .

~B9!

Performing these integrals, withkmin(12dl)<k8<kmin , we
have
e
r

,

r
ic-
r

Sv
t ~k!5S d l

4pkmin
3 D Flv

2Sv
2~kmin!

n3 1
lB

2SB
2~kmin!

D3 G . ~B10!

Similarly, the noise correction toSB(k) is obtained from the
magnetic autocorrelation̂Bk,v

(1)* Bk,v
(1) &. Using the same pro-

cedure, the renormalized noise is

SB
t ~k!5S d l

pkmin
3 D FlB

2Sv~kmin!SB~kmin!

nD~n1D !
G . ~B11!

Using the scalings from Sec. III, we can now write th
differential recursion relations of the renormalization grou

dn

dl
5nFa221S lv

2Sv~kmin!

8pn3kmin
3 D @32gv~kmin!#1S lB

2SB~kmin!

8pnD2kmin
3 D

3@32gB~kmin!#G , ~B12!

dD

dl
5DH a221

lB
2

2pD~n1D !kmin
3

3FSv~kmin!

n S 3

2
1

n2D

n1D
2

gv~kmin!

2 D
1

SB~kmin!

D S 3

2
2

n2D

n1D
2

gB~kmin!

2 D G J , ~B13!

dlv

dl
5lv@a1c21#50, ~B14!

dlB

dl
5lB@a1c21#50, ~B15!

dSv~k!

dl
5Sv~k!@a22c212gv~k!#

1
1

4pkmin
3 Flv

2Sv
2~kmin!

n3 1
lB

2SB
2~kmin!

D3 G ,
~B16!

dSB~k!

dl
5SB~k!@a22c212gB~k!#

1
1

pkmin
3 FlB

2Sv~kmin!SB~kmin!

nD~n1D !
G , ~B17!

Note that for any spatially dependent noise, a cuto
dependent white noise component is generated. This wh
noise correctiondoes not appearfor uncolored forcing,
where scale invariance results in an exact exponent iden
Rather, the extra component is a result of coupled inter
tions, suggesting that the system responds to spatially co
lated forcing by trying to ‘‘balance out’’ the discrepancy
scales.

The vertex corrections vanish due to Galilean invarian
~see Appendix A!, giving the exponent identityc512a. As
before, there is only one independent exponent to find. S
ting dn/dl5dD/dl50 to obtain the fixed points, Eqs.~B12!
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and ~B13! give two equations for the exponenta. Consis-
tency then demands thatn5D. Once again, the dissipatio
rates are equal, even in the case of colored noise.

The exponent a is now expressed in terms of the no
strengths. Plugging this form into Eqs.~B16! and ~B17!
gives

dSv~k!

dl
53S 12

lv
2Sv~kmin!

8pkmin
3 n3 @32gv~kmin!#

2
lB

2SB~kmin!

8pkmin
3 D2n

@32gB~kmin!# DSv~k!2gv~k!Sv~k!

1
1

4pkmin
3 Flv

2Sv
2~kmin!

n3 1
lB

2SB
2~kmin!

D3 G , ~B18!

dSB~k!

dl
53S 12

lv
2Sv~kmin!

8pkmin
3 n3 @32gv~kmin!#

2
lB

2SB~kmin!

8pkmin
3 D2n

@32gB~kmin!# DSB~k!

2gB~k!SB~k!1
1

pkmin
3 FlB

2Sv~kmin!SB~kmin!

nD~n1D !
G .

~B19!

If the original noise spectrum had a power-law decay ak
→0, then this behavior would be preserved under rescal
Moreover, a white-noise component would be generated.
suming, then, thatS(k);k22b, the noise spectrum would
evolve toS(k)→S01Sbk22b. For convenience, we conside
only the case where the forcing functions have the samk
dependence. The recursion relations become

dS0
v

dl
53S0

vF12
1

8pnkmin
3 ~lv

2F@Sv#1lB
2F@SB# !G

1
1

4pkmin
3 Flv

2S @S0
v1Sb

v k22b#2

n3 D
1lB

2 S @S0
B1Sb

Bk22b#2

D3 D G , ~B20!

dS0
B

dl
53S0

BF12
1

8pnkmin
3 ~lv

2F@Sv#1lB
2F@SB# !G

1
lB

2

pkmin
3 S @S0

v1Sb
v kmin

22b#@S0
B1Sb

Bkmin
22b#

nD~n1D !
D ,

~B21!

dSb
v

dl
5Sb

v F ~312b!2
3

8pnkmin
3 ~lv

2F@Sv#1lB
2F@SB# !G ,

~B22!

dSb
B

dl
5Sb

BF ~312b!2
3

8pnkmin
3 ~lv

2F@Sv#1lB
2F@SB# !G ,

~B23!
e

g.
s-

where

F@Sv#5
3S0

v1~312b!Sb
v kmin

22b

n2

and

F@SB#5
3S0

B1~312b!Sb
Bkmin

22b

D2 .

For small values ofb, the long-range part of the noise
irrelevant. The~cutoff-dependent! white-noise part domi-
nates, and the above recursion relations reduce to

dS0

dl
53S02

9S0
2

8pkmin
3 n3 1

S0
2

4pkmin
3 n3 , ~B24!

whereS05S0
v1S0

B . Here we have letn5D for simplicity.
The fixed point now gives the effective transport coefficie

n t5DT5F7~S0
v1S0

B!

24p G1/3

kmin
21. ~B25!

Using this result, we obtain the scaling exponentsa5 5
7 and

c5 2
7 .

From the scaling arguments, the noise transforms aS
→ba22c2112bS. Hence the long-range part ofS(k) takes
over if

b.bc5c1
12a

2
5

3

7
, ~B26!

leading to new exponents. In this case, the recursion relat
become

dSb

dl
5~312b!SbS 12

3Sb

8pkmin
3 n3D , ~B27!

where Sb5Sb
v 1Sb

B . The turbulent diffusivities are now
given by

n t5Dt5F3~Sb
v 1Sb

B!kmin
22b

8p G1/3

kmin
21. ~B28!

For long-range order, then, the scaling exponents area51
22b/3 and c52b/3. Higher-order nonlinearities becom
important~i.e., our system needs more general equations! for
b>bmax5

3
2.

With these effective transport coefficients, the ener
spectra now become

Ev~k!5F p

3~Sb
v 1Sb

B!G
1/3

Sb
v k2124b/3, ~B29!

EB~k!5F p

3~Sb
v 1Sb

B!G
1/3

Sb
Bk2124b/3. ~B30!

Even for colored noise, energy equipartition does not oc
unless the forcing functions are equal.
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